Document Type

Article

Source of Publication

Computers Materials & Continua

Publication Date

1-1-2024

Abstract

Ad hoc networks offer promising applications due to their ease of use, installation, and deployment, as they do not require a centralized control entity. In these networks, nodes function as senders, receivers, and routers. One such network is the Flying Ad hoc Network (FANET), where nodes operate in three dimensions (3D) using Unmanned Aerial Vehicles (UAVs) that are remotely controlled. With the integration of the Internet of Things (IoT), these nodes form an IoT-enabled network called the Internet of UAVs (IoU). However, the airborne nodes in FANET consume high energy due to their payloads and low-power batteries. An optimal routing approach for communication is essential to address the problem of energy consumption and ensure energy-efficient data transmission in FANET. This paper proposes a novel energy-efficient routing protocol named the Integrated Energy-Efficient Distributed Link Stability Algorithm (IEE-DLSA), featuring a relay mechanism to provide optimal routing with energy efficiency in FANET. The energy efficiency of IEE-DLSA is enhanced using the Red-Black (R-B) tree to ensure the fairness of advanced energy-efficient nodes. Maintaining link stability, transmission loss avoidance, delay awareness with defined threshold metrics, and improving the overall performance of the proposed protocol are the core functionalities of IEE-DLSA. The simulations demonstrate that the proposed protocol performs well compared to traditional FANET routing protocols. The evaluation metrics considered in this study include network delay, packet delivery ratio, network throughput, transmission loss, network stability, and energy consumption.

ISSN

1546-2226

Publisher

Tech Science Press

Volume

81

Issue

2

First Page

2357

Last Page

2394

Disciplines

Engineering

Keywords

Energy efficiency, Routing protocol, Unmanned Aerial Vehicles, FANET, Link stability

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

no

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Included in

Engineering Commons

Share

COinS