Brain epilepsy seizure detection using bio-inspired krill herd and artificial alga optimized neural network approaches
Document Type
Article
Source of Publication
Journal of Ambient Intelligence and Humanized Computing
Publication Date
1-1-2020
Abstract
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. Nowadays, Epilepsy is one of the chronic severe neurological diseases; it has been identified with the help of brain signal analysis. The brain signals are recorded with the help of electrocorticography (ECoG), Electroencephalogram (EEG). From the brain signal, the abnormal brain functions are a more challenging task. The traditional systems are consuming more time to predict unusual brain patterns. Therefore, in this paper, effective bio-inspired machine learning techniques are utilized to predict the epilepsy seizure from the EEG signal with maximum recognition accuracy. Initially, patient brain images are collected by placing the electrodes on their scalp. From the brain signal, different features are extracted that are analyzed with the help of the Krill Herd algorithm for selecting the best features. The selected features are processed using an artificial alga optimized general Adversarial Networks. The network recognizes the intricate and abnormal seizure patterns. Then the discussed state-of-art methods are examined simulation results.
DOI Link
ISSN
Publisher
Springer Science and Business Media Deutschland GmbH
Last Page
12
Disciplines
Computer Sciences
Keywords
Artificial alga optimized general adversarial networks, Brain informatics, Electroencephalogram (EEG), Epilepsy, Krill herd algorithm
Scopus ID
Recommended Citation
Abugabah, Ahed; AlZubi, Ahmad Ali; Al-Maitah, Mohammed; and Alarifi, Abdulaziz, "Brain epilepsy seizure detection using bio-inspired krill herd and artificial alga optimized neural network approaches" (2020). All Works. 762.
https://zuscholars.zu.ac.ae/works/762
Indexed in Scopus
yes
Open Access
no