Document Type

Article

Source of Publication

Peerj Computer Science

Publication Date

8-29-2025

Abstract

The rapid growth in wireless communication demands has led to a surge in research on technologies capable of enhancing communication reliability, coverage, and energy efficiency. Among these, uncrewed aerial vehicles (UAV) and reconfigurable intelligent surfaces (RIS) have emerged as promising solutions. Prior research on using deep reinforcement learning (DRL) to integrate RIS with UAV concentrated on enhancing signal quality and coverage, but it ignored the challenges caused by electromagnetic interference (EMI). This article introduces a novel framework addressing the challenges posed by EMI from Gallium nitride (GaN) power amplifiers in RIS-assisted UAV communication systems. By integrating DRL with quadrature phase shift keying (QPSK) modulation, the proposed system dynamically optimizes UAV deployment and RIS configurations in real-time, mitigating EMI effects, improving signal-to-interference-plus-noise ratio (SINR), and enhancing energy efficiency. The framework demonstrates superior performance, with an SINR improvement of up to 6.5 dB in interference-prone environments, while achieving a 38% increase in energy efficiency compared to baseline models. Additionally, the system significantly reduces EMI impact, with a mitigation rate of over 70%, and extends coverage area by 35%. The integration of QPSK and DRL allows for real-time decision-making that balances communication quality and energy consumption. These results show the system's potential to outperform traditional methods, particularly in dynamic and challenging environments such as urban, disaster recovery, and remote settings.

ISSN

2376-5992

Publisher

PeerJ

Volume

11

Disciplines

Computer Sciences

Keywords

RIS, UAV communications, DRL, GaN power amplifier, EMI, Energy efficiency, QPSK

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed in Scopus

no

Open Access

yes

Open Access Type

Gold: This publication is openly available in an open access journal/series

Share

COinS