Learning to Learn with Variational Information Bottleneck for Domain Generalization
ORCID Identifiers
Document Type
Conference Proceeding
Source of Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Publication Date
1-1-2020
Abstract
© 2020, Springer Nature Switzerland AG. Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift. In this paper, we address both problems. We introduce a probabilistic meta-learning model for domain generalization, in which classifier parameters shared across domains are modeled as distributions. This enables better handling of prediction uncertainty on unseen domains. To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB. MetaVIB is derived from novel variational bounds of mutual information, by leveraging the meta-learning setting of domain generalization. Through episodic training, MetaVIB learns to gradually narrow domain gaps to establish domain-invariant representations, while simultaneously maximizing prediction accuracy. We conduct experiments on three benchmarks for cross-domain visual recognition. Comprehensive ablation studies validate the benefits of MetaVIB for domain generalization. The comparison results demonstrate our method outperforms previous approaches consistently.
DOI Link
ISBN
9783030586065
ISSN
Publisher
Springer International Publishing
Volume
12355 LNCS
First Page
200
Last Page
216
Disciplines
Computer Sciences | Education
Keywords
Domain generalization, Information bottleneck, Meta learning, Variational inference
Recommended Citation
Du, Yingjun; Xu, Jun; Xiong, Huan; Qiu, Qiang; Zhen, Xiantong; Snoek, Cees G.M.; and Shao, Ling, "Learning to Learn with Variational Information Bottleneck for Domain Generalization" (2020). All Works. 2242.
https://zuscholars.zu.ac.ae/works/2242
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Green: A manuscript of this publication is openly available in a repository