Learning Enriched Features for Real Image Restoration and Enhancement
Document Type
Conference Proceeding
Source of Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Publication Date
1-1-2020
Abstract
© 2020, Springer Nature Switzerland AG. With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.
DOI Link
ISBN
9783030585945
ISSN
Publisher
Springer International Publishing
Volume
12370 LNCS
First Page
492
Last Page
511
Disciplines
Computer Sciences
Keywords
Image denoising, Image enhancement, Super-resolution
Recommended Citation
Zamir, Syed Waqas; Arora, Aditya; Khan, Salman; Hayat, Munawar; Khan, Fahad Shahbaz; Yang, Ming Hsuan; and Shao, Ling, "Learning Enriched Features for Real Image Restoration and Enhancement" (2020). All Works. 2234.
https://zuscholars.zu.ac.ae/works/2234
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Green: A manuscript of this publication is openly available in a repository