Document Type
Article
Source of Publication
Internet of Things and Cyber-Physical Systems
Publication Date
7-14-2023
Abstract
Cloud computing in today's computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling.
DOI Link
ISSN
Publisher
Elsevier BV
Volume
4
First Page
32
Last Page
39
Disciplines
Computer Sciences
Keywords
Ant colony optimization (ACO), Cloud computing, Density-based spatial clustering of applications with noise (DBSCAN), PSO (particle swarm optimization), Virtual machine (VM)
Scopus ID
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Mustapha, S. M.F.D.Syed and Gupta, Punit, "DBSCAN inspired task scheduling algorithm for cloud infrastructure" (2023). All Works. 5937.
https://zuscholars.zu.ac.ae/works/5937
Indexed in Scopus
yes
Open Access
yes
Open Access Type
Hybrid: This publication is openly available in a subscription-based journal/series