Dynamic Parameter Allocation with Reinforcement Learning for LoRaWAN
Document Type
Article
Source of Publication
IEEE Internet of Things Journal
Publication Date
6-15-2023
Abstract
LoRaWAN attracted lots of attention with its capacity for large device numbers, long-range, and low-power consumption. In order to simplify the transmission procedure, a pure Aloha protocol is implemented into its MAC layer. However, as the number of connected devices to the base station increases, the devices' transmission parameters allocation becomes a vital issue related to network performance. This research contributes to the decentralized dynamic spreading factor (SF) allocation strategies during transmission by proposing a score table-based evaluation and parameters surfing (STEPS) approach. STEPS is a reinforcement learning-based method that evaluates and changes the parameters based on probability and score tables. It provides a nondeterministic parameter selection method by updating the table while transmitting. Some variants of STEPS with different algorithms are proposed. Moreover, an estimation-based initialization is proposed to improve learning performance. Simulations and statistical tests are carried out with MULANE, a lightweight LoRaWAN Simulator developed in our previous work. The results show that the estimation has a high confidence level. Compared with the baseline methods, the proposed methods reduce energy consumption by 24%-27% in different numbers of nodes. For bi-directional transmission, the proposed methods increase the 18% network throughput in a small number of nodes and 33% in a large number of nodes. Moreover, the proposed methods provide a framework of decentralized parameter allocation, which gives the extendability of this work.
DOI Link
ISSN
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Volume
10
Issue
12
First Page
10250
Last Page
10265
Disciplines
Computer Sciences
Keywords
Decentralized spreading factor (SF) allocation, energy consumption, LoRaWAN, reinforcement learning
Scopus ID
Recommended Citation
Chen, Mi; Mokdad, Lynda; Ben-Othman, Jalel; and Fourneau, Jean Michel, "Dynamic Parameter Allocation with Reinforcement Learning for LoRaWAN" (2023). All Works. 5977.
https://zuscholars.zu.ac.ae/works/5977
Indexed in Scopus
yes
Open Access
no