Global Differential Privacy for Distributed Metaverse Healthcare Systems
Document Type
Conference Proceeding
Source of Publication
2023 International Conference on Intelligent Metaverse Technologies & Applications (iMETA)
Publication Date
1-20-2023
Abstract
Metaverse-enabled digital healthcare systems are expected to exploit an unprecedented amount of personal health data, while ensuring that sensitive or private information of individuals are not disclosed. Machine learning and artificial intelligence (ML/AI) techniques can be widely utilized in metaverse healthcare systems, such as virtual clinics and intelligent consultations. In such scenarios, the key challenge is that data privacy laws might not allow virtual clinics to share their medical data with other parties. Moreover, clinical AI/ML models themselves carry extensive information about the medical datasets, such that private attributes can be easily inferred by malicious actors in the metaverse (if not rigorously privatized). In this paper, inspired by the idea of “incognito mode”, which has recently been developed as a promising solution to safeguard metaverse users' privacy, we propose global differential privacy for the distributed metaverse healthcare systems. In our scheme, a randomized mechanism in the format of artificial “mix-up” noise is applied to the federated clinical ML/AI models before sharing with other peers. This way, we provide an adjustable level of distributed privacy against both the malicious actors and honest-but-curious metaverse servers. Our evaluations on breast cancer Wisconsin dataset (BCWD) highlight the privacy-utility trade-off (PUT) in terms of diagnosis accuracy and loss function for different levels of privacy. We also compare our private scheme with the non-private centralized setup in terms of diagnosis accuracy.
DOI Link
ISBN
979-8-3503-2845-5
Publisher
IEEE
Volume
00
First Page
01
Last Page
08
Disciplines
Computer Sciences
Keywords
Privacy, Adaptation models, Differential privacy, Cloud computing, Metaverse, Perturbation methods, Machine learning
Recommended Citation
Letafati, Mehdi and Otoum, Safa, "Global Differential Privacy for Distributed Metaverse Healthcare Systems" (2023). All Works. 6205.
https://zuscholars.zu.ac.ae/works/6205
Indexed in Scopus
no
Open Access
yes
Open Access Type
Green: A manuscript of this publication is openly available in a repository